ПAMIBIA UПIVERSITY
 OF SCIEMCE AMD TECHחOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 6
COURSE CODE: ORC601S	COURSE NAME: ORGANIC CHEMISTRY 1
SESSION: JUNE 2019	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	MS. NATALIA SHAKELA
MODERATOR:	PROF. HABAUKA KWAAMBWA

INSTRUCTIONS

1. Answer ALL the questions.
2. Write clearly and neatly.
3. Number the answers clearly
4. All written work must be done in blue or black ink and sketches can be done in pencil
5. No books, notes and other additional aids are allowed

PERMISSIBLE MATERIALS

Non-programmable Calculators

ATTACHMENTS

${ }^{1} \mathrm{H}$ NMR and IR Spectral Data, pK Chart and Periodic Table

QUESTION 1: Multiple Choice Questions

- There are 25 multiple choice questions in this section. Each question carries 2 marks.
- Answer ALL questions by selecting the letter of the correct answer.
- Choose the best possible answer for each question, even if you think there is another possible answer that is not given.
1.1 Arrange the following in order of increasing basicity?
I. OH^{-}
II. $\mathrm{Cl}-$
III. $\mathrm{H}_{2} \mathrm{O}$
IV. NH_{3}
A. II, III, IV, I
B. III, I, IV, II
C. IV, I, II, III
D. III, IV, I, II
1.2 List the following compounds in the order of increasing acidity.
A.
B.

C. $\mathrm{CH}_{3} \mathrm{OH}$
D.

A. A; B; C;D
B. A; C; B; D
C. A; C; D; B
D. $\mathrm{D} ; \mathrm{C} ; \mathrm{A} ; \mathrm{B}$
1.3 Does the equilibrium of this reaction lie to the left or right?

A. Right
B. Left
C. It cannot be determined
D. The forward and reverse reactions are equally favoured
1.4 Which are acid-base reactions according to Bronsted-Lowry Theory?

A. I
B. I; III; IV
C. I; II, III
D. I; IV
1.5 Consider the three isomeric alkanes n-hexane, 2, 3-dimethylbutane, and 2-methylpentane. Which of the following correctly lists these compounds in order of increasing boiling point?
A. 2, 3-dimethylbutane < 2-methylpentane < n-hexane
B. 2-methylpentane $<n$-hexane <2, 3-dimethylbutane
C. 2-methylpentane <2, 3-dimethylbutane $<n$-hexane
D. n-hexane < 2-methylpentane <2, 3-dimethylbutane
1.6 When a small amount of hexanoic acid $\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}_{2} \mathrm{H}, \mathrm{pK} \mathrm{a}_{\mathrm{a}} \sim 4.8\right]$ is added to a separating funnel which contains the organic solvent diethyl ether and water with a pH of 2.0, it is found mainly in the \qquad phase as \qquad .
A. ether; $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}_{2}{ }^{-}$
B. water; $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}_{2}^{-}$
C. ether; $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}_{2} \mathrm{H}$
D. water; $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}_{2} \mathrm{H}$
1.7 Among the butane conformers, which occur(s) at energy minima on a graph of potential energy versus dihedral angle?
A. gauche only
B. eclipsed and totally eclipsed
C. gauche and anti
D. eclipsed only
1.8 How many stereogenic centres does the addictive drug heroin have?

A. 4
B. 5
C. 6
D. 7
1.9 In question 1.8 above, how many stereoisomers are possible for the drug heroin?
A. 8
B. 16
C. 32
D. 64
1.10 Designate the following compound as R or S configuration.

A. R
B. S
1.11 The graph below shows the energy changes that occur during rotation the $\mathrm{C}-\mathrm{C}$ bond indicated in compound a. Which letter(s) on the graph correspond(s) to the Newman Projection?

A. A and G
B. B and F
C. C and E
D. D
1.12 Select the list that places the substituents from highest priority to lowest priority when assigning a stereogenic centre.
A) $-\mathrm{CH}_{2} \mathrm{Br} ;-\mathrm{Br} ;-\mathrm{Cl} ;-\mathrm{CH}_{3}$
B) $-\mathrm{CH}_{2} \mathrm{CH}_{3} ;-\mathrm{CH}_{3} ;-\mathrm{CH}_{2} \mathrm{OH} ;-\mathrm{H}$
C) $-\mathrm{OCH}_{3} ;-\mathrm{OH} ;-\mathrm{CH}_{3} ;-\mathrm{H}$
D) $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{I} ;-\mathrm{HC}=\mathrm{CH}_{2} ;-\mathrm{CH}_{3} ;-\mathrm{H}$
A. A
B. B
C. C
D. D
1.13 A decrease in \qquad result in an increase in the rate of a chemical reaction?
A. Energy of activation
B. Temperature
C. Concentration
D. Collision frequency
1.14 Give the IUPAC name of the following compound?

$$
\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}
$$

A. 4,4-dimethyl-2-hexyne
B. 5,5-dimethyl-2-hexyne
C. 5,5-dimethyl-3-hexyne
D. None of the above
1.15 Which of the following reaction conditions would result in the anti-Markovnikov addition to the alkene?
A) $\mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}$
B) HBr
C) HCl
D) [1] $\mathrm{BH}_{3} ;[2] \mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{OH}^{-}$
A. A
B. B
C. C
D. D
1.16 Markovnikov addition of HBr to 1-propene involves:
A. Initial attack of bromide ion
B. Initial attack of bromine radical
C. Formation of a secondary carbocation
D. Formation of a primary carbocation
1.17 Assuming no other changes, what is the effect of doubling both the alkyl halide and the nucleophile concentrations in a $\mathrm{S}_{\mathrm{N}} 2$ reaction?
A. no change
B. doubles the rate
C. triples the rate
D. quadruples the rate
1.18 Given the following substitution reaction, what would the effect be of changing the solvent from ethanol to DMSO?

A. The rate would increase because $S_{N} 2$ reactions favour a polar aprotic solvent
B. The rate would decrease because $\mathrm{S}_{\mathrm{N}} 1$ reactions favour a polar protic solvent
C. The rate would not be affected by the change in solvent.
D. The potential change cannot be predicted
1.19 Which of the following anions is the best leaving group?
A) $\mathrm{NH}_{2}{ }^{-}$
B) Cl^{-}
C) $\mathrm{CH}_{3}{ }^{-}$
D) OH^{-}
A. A
B. B
C. C
D. D
1.20 Which of the following is the strongest nucleophile in polar protic solvents?
A) F^{-}
B) $\mathrm{CH}_{3} \mathrm{O}^{-}$
C) HO^{-}
D) $\mathrm{CH}_{3} \mathrm{~S}^{-}$
A. A
B. B
C. C
D. D
1.21 Which of the following carbocations is the most stable?

A

B

C

D
A. A
B. B
C. C
D. D
1.22 Which alkyl halide (A-C) would give the following alkene (\mathbf{Y}) as the only product in an elimination reaction?

A

B

C

Y
A. A
B. B
C. C
D. A and B
1.23 What is the product of the following reaction?

A.

B.

C.

D.

A. A
B. B
C. C
D. D
1.24 Which of the following statements is (are) true about an E1 elimination reaction?
A. It is fastest with 3° Halides
B. The identity of the base affects the rate of reaction
C. A better leaving group increases the reaction rate
D. All of the above are true
1.25 How many peaks could theoretically be observed in the ${ }^{1} \mathrm{H}$ NMR signal(s) for each of the indicated atoms?
A

B

C

D

E

A. $A=3 ; b=8 ; C=1 ; D=4 ; E=3$
B. $A=3 ; b=8 ; C=2 ; D=4 ; E=4$
C. $A=4 ; b=8 ; C=2 ; D=4 ; E=5$
D. $A=4 ; b=7 ; C=2 ; D=4 ; E=3$

SECTION B:

QUESTION 2

What is (are) the product(s) of the following reactions? Represent the products as skeletal structures and show the stereochemistry where necessary.

Note: Each question carries 2 marks.
a)

b)
 $\xrightarrow[\text { 2. } \mathrm{NaBH}_{4}]{\text { 1. } \mathrm{Hg}(\mathrm{OAC})_{2}, \mathrm{H}_{2} \mathrm{O}: T \mathrm{THF}}$ \square
c)

\square
d)

$$
\xrightarrow[\mathrm{KMnO}_{4} \mathrm{O}^{+}]{ }
$$

\square
e)

$\xrightarrow[\text { 2. } \mathrm{H}_{2} \mathrm{O}_{2},-\mathrm{OH}]{\text { 1. }}$ \square

QUESTION 3

Determine the reagents required to achieve the following transformation.
Note: Each question carries 2 marks.
a)

b)

c)

d)

e)

QUESTION 4

Consider the following reaction below and answer the questions that follow.

a. Draw a mechanism for this reaction using curved arrows.
b. Draw an energy level diagram and label the axes, starting material, product, $E a$ and ΔH°. Assume that the reaction is exothermic.
c. Draw the structure of the transition state.
d. What is the rate of the reaction?
e. What happens to the reaction if:
i. The leaving group is changed from Br^{-}to l^{-}?
ii. The solvent is changed from acetone to ethanol?
iii. The concentration of both alkyl halide and CN is increased by a factor of five?

QUESTION 5

Draw a stepwise, detailed mechanism for the following reaction. In order to receive full marks, show all the electron movement; draw all the intermediates and all the products.

Hint: The reaction produces more than one product

QUESTION 6

Classify each of the following transformations as either a substitution, elimination, addition or rearrangement reaction.

Note: Each question carries 1 mark.
a.

c.

b.

d.

QUESTION 7

Use the NMR and IR spectral Table provided to identify the structure of one of the two isomers A or B with a molecular formula of $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}$ and corresponding to the spectral data below.
a. Compound A: IR peak at $1742 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR data (ppm) at 2.15 (singlet; 3 H), 3.70 (singlet, 2 H), and 7.20 (broad singlet, 5 H).
b. Compound B: IR peak at $1688 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR data (ppm) at 1.22 (triplet, 3 H), 2.98 (quartet, 2 H), and 7.28-7.95 (multiplet, 5 H).

END OF EXAM QUESTIONS
GOOD LUCK

${ }^{1} \mathrm{H}$ NMR SPECTRAL DATA

Characteristic Chemical Shifts of Common Types of Protons

Type of proton	Chemical shift (ppm)	Type of proton	Chemical shift (ppm)
	0.9-2		4.5-6
- RCH_{3} - $\mathrm{R}_{2} \mathrm{CH}_{2}$ - $\mathrm{R}_{3} \mathrm{CH}$	$\begin{aligned} & \sim 0.9 \\ & \sim 1.3 \\ & \sim 1.7 \end{aligned}$		6.5-8
	1.5-2.5		9-10
$-\mathrm{C}=\mathrm{C}-\mathrm{H}$	-2.5		10-12
	2.5-4	$\mathrm{RO}-\mathrm{H}$ or	1-5

Important IR Absorptions

Bond type	Approximate $\overline{\mathrm{v}}\left(\mathrm{cm}^{-1}\right)$	Intensity
$\mathrm{O}-\mathrm{H}$	3600-3200	strong, broad
$\mathrm{N}-\mathrm{H}$	3500-3200	medium
$\mathrm{C}-\mathrm{H}$	~ 3000	
- $\mathrm{C}_{\text {sp }}{ }^{2}-\mathrm{H}$	3000-2850	strong
- $\mathrm{C}_{3 p^{2}}-\mathrm{H}$	3150-3000	medium
- $\mathrm{C}_{s p}-\mathrm{H}$	3300	medium
$\mathrm{C} \equiv \mathrm{C}$	2250	medium
$C \equiv N$	2250	medium
$\mathrm{C}=0$	1800-1650 (often ~1700)	strong
$\mathrm{C}=\mathrm{C}$	1650	medium
	1600, 1500	medium

pK Chart

hydrogen cyanide

